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Abstract—Background: Refactoring is a critical task in soft- 

ware maintenance and is generally performed to  enforce  the 

best design and implementation practices or to cope with design 
defects. Several studies attempted to detect refactoring activities 

through mining software repositories allowing to collect, analyze 

and get actionable data-driven insights about refactoring prac- 
tices within software projects. 

Aim: We aim at identifying, among the various quality models 

presented in the literature, the ones that are more in-line with the 
developer’s vision of quality optimization, when they explicitly 

mention that they are refactoring to improve them. 
Method: We extract a large corpus of design-related refactor- 

ing activities that are applied and documented by developers 

during their daily changes from 3,795 curated  open  source 
Java projects. In particular, we extract a large-scale corpus of 

structural metrics and anti-pattern enhancement changes, from 

which we identify 1,245 quality improvement commits with their 
corresponding refactoring operations, as perceived by software 

engineers. Thereafter, we empirically analyze the impact of these 

refactoring operations on a set of common state-of-the-art design 
quality metrics. 

Results: The statistical analysis of the obtained results shows 

that (i) a few state-of-the-art metrics are more popular than 
others; and (ii) some metrics are being more emphasized than 

others. 

Conclusions: We verify that there are a variety of structural 
metrics that can represent the internal quality attributes with 

different degrees of improvement and degradation of software 

quality. Most of the metrics that are mapped to the main quality 
attributes do capture developer intentions of quality improvement 

reported in the commit messages, but for some quality attributes, 

they don’t. 
Index Terms—refactoring, software quality, empirical study 

 
I. INTRODUCTION 

Being the de facto practice of improving software design 

without altering its external behavior, refactoring has been the 

focus on several studies, which aim to support its application 
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by identifying refactoring opportunities, in the source code, 

through the optimization of structural metrics, and the removal 

of code smells [9], [25], [26], [28], [39], [49], [51]. Therefore, 

several studies have been analyzing the impact of refactoring 

on existing literature quality attributes, structural metrics, and 

code  smells  [3],  [4],  [6],  [7],  [17],  [29],  [38],  [52].  The 

spectrum of quality attributes, structural metrics and code 

smells, represents the main driver for studies aiming to imitate 

the human decision making, and automate the refactoring 

process. 

Despite the growing effort in recommending refactorings 

through structural metrics optimization and code smells re- 

moval, there is very little evidence on whether developers 

follow that intention when refactoring their code. A recent 

study by Pantiuchina et al. [35] has shown that there is a 

misperception between the state-of-the-art structural metrics, 

widely used as indicators for refactoring, and what developers 

actually consider to be an improvement in their source code. 

Thus, there is a need to distinguish, among all the structural 

metrics, typically used in refactoring literature, the particular 

ones that are of a better representation of the developers’ 

perception of software quality improvement. 

This paper aims in identifying, among the various quality 

models presented in the literature, the ones that are more in- 

line with the developer’s vision of quality, when they explicitly 

state that they are refactoring to improve it. 

We start with reviewing literature studies, which propose 

software quality attributes and their corresponding measure- 

ment in the source code, in terms of metrics. Software quality 

attributes are typically characterized by high-level definitions 

whose interpretations allow the possibility for multiple ways 

to calculate them in the source code. Thus, there is little 

consensus on what would be the optimal match between 

quality attributes, and code-level design metrics. For instance, 

as shown later in Section II, the notion of complexity was 

the subject of many studies that proposed several metrics to 
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calculate it. Therefore, we investigate which code-level metrics 

are more representative to the high-level quality attributes, 

when their optimization is explicitly stated by the developer, 

when applying refactorings. 
 

Practically, we have classified 1,245 commits, as quality 

improvement commits, by manually analyzing their messages 

and identifying an explicit statement of improving an internal 

quality attribute, along with detecting their refactoring activ- 

ities. We mined these commits from 3,795 well-engineered, 

open-source projects. We identify their refactoring operations 

by applying state-of-the-art refactoring mining tools [41], [50]. 

We refine our dataset by untangling each commit to select 

only refactored code elements. Then, we cluster commits per 

quality attribute (complexity, inheritance, etc.). Afterward, for 

each quality attribute, we calculate the values of its corres- 

ponding structural metrics, in the files, before and after their 

refactorings. And finally, we empirically compare the variation 

of these values, to distinguish the metrics that are significantly 

impacted by the refactorings, and so they better reflect the 

developer’s intention of enhancing its corresponding quality 

attribute. To the best of our knowledge, no previous study 

has investigated the relationship between quality attributes and 

their corresponding structural metrics, from the developer’s 

perception. Our key findings show that not all state of the art 

structural metrics equally represent internal quality attributes; 

some quality attributes are being more emphasized than others 

by developers. This paper extends the existing knowledge of 

empirically exploring the relationship between refactoring and 

quality as follows: 

 

 
1) We extensively review the literature of quality attributes, 

used in the literature of software quality, and their cor- 

responding possible measurements, in terms of metrics. 

Then we mine a large scale dataset from GitHub that 

consists of 1,245 commits from 3,795 software projects, 

proven to contain refactoring operations, and illustrating 

developers self-stated intentions to enhance our studied 

quality attributes. 

2) For each quality attribute, we empirically investigate 

which metrics are most impacted by refactorings, and so, 

the closest to capture the developer’s intention. 

3) For reproducibility and extension, we provide a dataset 

of commits, their refactoring operations, and their impact 

on several quality metrics1. 

 

 
The remainder of this paper is organized as follows: Section 

II reviews the existing studies related to measuring software 

quality and analyzing the relationship between quality attrib- 

utes and refactoring. Section III outlines our empirical setup 

in terms of data collection, analysis and research question. 

Section IV discusses our findings, while Section V captures 

any threats to the validity of our work, before concluding with 

Section VI. 

II. RELATED WORK 

It is widely acknowledged in the literature of software 

refactoring that it has the ultimate goal to improve software 

quality and fix design and implementation bad practices [15]. 

In recent year, there is much research efforts have focused on 

studying and exploring the impact of refactoring on software 

quality [3], [4], [6], [7], [17], [27], [29], [38], [52]. The vast 

majority of studies have focused on measuring the internal and 

external quality attributes to determine the overall quality of 

a software system being refactored. In this section, we review 

and discuss the relevant literature on the impact of refactoring 

on software quality. 

In an academic setting, Stroulia and Kapoor [44] invest- 

igated the effect of size and coupling measures on software 

quality after the application of refactoring. The results in 

Stroulia and Kapoor’s work show that size and coupling 

metrics decreased after refactorings. Kataoka et al. [21] used 

only coupling measures to study the impact of Extract Method 

and Extract Class refactoring operations on the maintainability 

of a single C++ software system, and found that refactoring 

has positive impact on system maintainability. Demeyer [10] 

performed a comparative study to investigate the impact of 

refactoring on performance. The results of Demeyer’s study 

show that program performance is enhanced after the ap- 

plication of refactoring. Moreover, Sahraoui et al. [37] used 

coupling and inheritance measures to automatically detect 

potential anti-patterns and predict situations where refactoring 

could be applied to improve software maintainability. The 

authors found that quality metrics can help to bridge the gap 

between design improvement and its automation, but in some 

situations the process cannot be fully automated as it requires 

the programmer’s validation through manual inspection. 

Tahvildari et al. [47] proposed a software transformation 

framework that links software quality requirements like per- 

formance and maintainability with program transformation to 

improve the target qualities. The results show that utilizing 

design patterns increase system’s maintainability and perform- 

ance. In another study, Tahvildari and Kontogiannis [46] used 

the same framework to evaluate four object-oriented measures 

(i.e., cohesion, coupling, complexity, and inheritance) in addi- 

tion to software maintainability. Leitch and Stroulia [22] used 

dependency graph-based techniques to study the impact of two 

refactorings, namely, Extract Method and Move Method, on 

software maintenance using two small systems. The authors 

found that refactoring enhanced the quality by (1) reducing the 

design size, (2) increasing number of procedures, (3) reducing 

the data dependencies, and (4) reducing regression testing. 

Bios and Mens [14] proposed a framework to analyze the 

impact of three refactorings on five internal quality attributes 

(i.e., cohesion, coupling, complexity, inheritance, and size), 

and their findings show positive and negative impacts on the 

selected measures. Bios et al. [12] provided a set of guidelines 

for optimizing cohesion and coupling measures. This study 

shows that the impact of refactoring on these measures ranged 
 

1     https://smilevo.github.io/self-affirmed-refactoring/ 



Table (I)   A summary of the literature on the impact of refactoring activities on software quality attributes. 
 

Study Year Approach Software Metric Internal QA External QA 

Sahraoui et al. [37] 2000 Analyzing code histories CLD /  NOC / NMO / NMI 

NMA / SIX /  CBO / DAC 

IH-ICP / OCAIC /  DMMEC / OMMEC 

Inheritance / Coupling Fault-proneness / Maintainability 

Stroulia  & Kapoor [44] 2001 Performing a case study LOC /  LCOM / CC Size / Coupling Design extensibility  

Kataoka et al. [21] 2002 Analyzing code histories Coupling measures Coupling Maintainability 

Demeyer [10] 2002 Analyzing code histories N/A Polymorphism Performance 

Tahvildari et al. [47] 2003 Analyzing code histories LOC /  CC /  CMT / Halstead’s efforts Complexity Performance / Maintainability 

Leitch & Stroulia  [22] 2003 Analyzing code histories SLOC / No. of Procedure Size Maintainability 

Bois & Mens [14] 2003 Analyzing code histories NOM / CC / NOC / CBO 

RFC / LCOM 

Inheritance / Cohesion / Coupling / Size / Complexity N/A 

Tahvildari & Kontogiannis [46] 2004 Analyzing code histories LCOM /  WMC / RFC / NOM 

CDE /  DAC /  TCC 

Inheritance / Cohesion / Coupling / Complexity Maintainability 

Bois et al. [12] 2004 Analyzing code histories N/A Cohesion / Coupling Maintainability 

Bois et al. [13] 2005 Analyzing code histories N/A N/A Understandability  

Geppert et al. [16] 2005 Performing a case study N/A N/A Changeability  

Ratzinger et  al. [36] 2005 Mining commit log 

Analyzing code histories 

N/A Coupling Evolvability 

Moser et al. [30] 2006 Analyzing code histories CK /  MCC / LOC Inheritance / Cohesion / Coupling / Complexity Reusability  

Wilking et  al. [52] 2007 Analyzing code histories CC / LOC Complexity Maintainability / Modifiability  

Stroggylos & Spinells [43] 2007 Mining commit log CK /  Ca / NPM Inheritance / Cohesion / Coupling / Complexity N/A 

Moser et al. [29] 2008 Analyzing code histories CK /  LOC / Effort (hour) Cohesion / Coupling / Complexity Productivity 

Alshayeb [3] 2009 Analyzing code histories CK /  LOC / FANOUT Inheritance / Cohesion / Coupling / Size Adaptability /  Maintainability  / Testability / Reusability 

Understandability  

Hegedus et al. [17] 2010 Analyzing code histories CK Coupling /  Complexity / Size Maintainability / Testability / Error Proneness /  Changeability 

Stability / Analizability  

Shatnawi & Li [38] 2011 Analyzing code histories CK /  QMOOD Inheritance / Cohesion / Coupling / Po lymorphism / Size 

Encapsulation / Composition / Abstraction / Messaging 

Reusability /  Flexibility / Extendibility /  Effectiveness 

Bavota  et al. [5] 2013 Analyzing code histories 

Surveying developers 

ICP / IC-CD / CCBC Coupling N/A 

Szoke et al. [45] 2014 Mining commit log 

Surveying developers 

CC / U / NOA /  NII / NAni 

LOC /  NUMPAR / NMni / NA 

Size / Complexity N/A 

Bavota  et al. [4] 2015 Mining commit log 

Analyzing code histories 

CK /  LOC / NOA / NOO 

C3 / CCBC 

Inheritance / Cohesion / Coupling / Size / Complexity N/A 

Cedrim at al. [6] 2016 Mining commit log 

Analyzing code histories 

LOC /  CBO / NOM / CC 

FANOUT / FANIN 

Cohesion / Coupling / Complexity N/A 

Chavez et al. [7] 2017 Mining commit log 

Analyzing code histories 

CBO / WMC /  DIT / NOC 

LOC / LCOM2 / LCOM3 / WOC 

TCC /  FANIN /  FANOUT /  CINT 

CDISP /  CC /  Evg / NPATH 

MaxNest / IFANIN /  OR / CLOC 

STMTC / CDL / NIV / NIM / NOPA 

Inheritance / Cohesion / Coupling / Size / Complexity N/A 

Pantiuchina  et al. [35] 2018 Mining commit log 

Analyzing code histories 

LCOM /  CBO / WMC / RFC 

C3 / B&W / SRead 

Cohesion / Coupling / Complexity Readability 

 
 

from negative to positive. In a follow-up work, Bios et al. [13] 

conducted a study to differentiate between the application of 

Refactor to Understand and the traditional Read to Understand 

pattern. Their findings show that refactoring plays a role in 

improving the understandability of the software. 
 

Geppert et al. [16] investigated the impact of refactoring 

on changeability focusing on three factors for changeability, 

namely, customer-reported defect rates, change effort, and 

scope of changes. Their findings show a significant decrease 

in the first two factors. Ratzinger et al. [36] analyzed the 

historical data of a large industrial system and focused on 

reducing change couplings. Based on the identified change 

couplings, they also analyzed code smell changes for the 

purpose of identifying where to apply refactoring efficiently. 

They concluded that refactoring is able to enhance software 

evolvability (i.e., reduce the change coupling). In an agile 

development environment, Moser et al. [30] used internal 

measures (i.e., CK, MCC, LOC) to explore the effect of 

refactoring on the reusability of the code using a commer- 

cial system, and found that refactoring was able to improve 

the reusability of hard-to-reuse classes. Wilking et al. [52] 

empirically studied the effect of refactoring on non-functional 

aspects, i.e., the maintainability and modifiability of system 

systems. They tested the maintainability by explicitly adding 

defects to the code, and then they measured the time taken to 

remove them. Modifiability, on the other hand, was examined 

by adding new functionalities and then measuring the LOC 

metric and the time taken to implement these features. The 

authors did not find a clear effect of refactoring on these two 

external attributes. 

 

Stroggylos and Spinellis [43] opted for searching words 

stemming from the verb “refactor" such as “refactoring” or 

“refactored” to identify refactoring-related commits to study 

the impact of refactoring on quality using eight object-oriented 

metrics. Their results indicated possible negative effects of 

refactoring on quality, e.g., increased LCOM metric. Moser et 

al. [29] studied the impact of refactoring on the productivity 

in an agile team. The achieved results show that refactoring 

improved software developers’ productivity besides several 

aspects of quality, e.g., maintainability. Alshayeb [3] con- 

ducted a study aiming at assessing the impact of eight re- 

factorings on five external quality attributes (i.e., adaptability, 

maintainability, understandability, reusability, and testability). 

The author found that refactoring could improve the quality 

in some classes, but could also decrease software quality to 

some extent in other classes. Hegedus et al. [17] examined 

the effect of singular refactoring techniques on  testability, 

error proneness, and other maintainability attributes. They 

concluded that refactoring could have undesired side effects 

that can degrade the quality of the source code. 
 

In an empirical setting, Shatnawi and Li [38] used the 

hierarchical quality model to assess the impact of refactoring 

on four software quality factors, namely, reusability, flexibility, 

extendibility, and effectiveness. The authors found that the 

majority of refactoring operations exhibit positive impact on 

quality; however, some operations deteriorated quality. Bavota 

et al. empirically investigated the developers’ perception of 

coupling, as captured by structural, dynamic, semantic, and 

logical coupling measures. They found that semantic coupling 

measure aligns with developers’ perceptions better than the 



other coupling measures. In a more recent study, Bavota et 

al. [4] used RefFinder2, a version-based refactoring  detec- 

tion tool, to mine the evolution history of three open-source 

systems. They mainly investigated the relationship between 

refactoring and quality. The study findings indicate that 42% 

of the performed refactorings are affected by code smells, and 

refactorings were able to eliminate code smells in only 7% of 

the cases. 

Cedrim et al. [6] conducted a longitudinal study of 25 

projects to investigate the improvement of software structural 

quality. They analyzed the relationship of refactorings and 

code smells by classifying refactorings according to the ad- 

dition or removal of poor code structures. The study results 

indicate that only 2.24% of refactorings removed code smells, 

and 2.66% introduced new  ones.  Recently,  Chavez  et  al. 

[7] studied the effect of refactoring on five internal quality 

attributes, namely, cohesion, coupling, complexity, inheritance, 

and size, using 25 quality metrics. The study shows that root- 

canal refactoring-related operations are either improved or at 

least not worsened the internal quality attributes. Additionally, 

when floss refactoring-related operations are applied, 55% of 

these operations improved these attributes, while only 10% of 

quality declined. 

In particular, two studies [35], [45] are most related to our 

work have analyzed the comment commits in which developers 

stated the purpose of improving the quality. Szoke et al. [45] 

studied 198 refactoring commits of five large-scale industrial 

systems to investigate the effects of these commits on quality 

of several revisions for a period of time. To know the purpose 

of the applied refactorings, they trained developers and asked 

them to state the reason  when  committing  the  changes  to 

the repositories, which could be related to (1) fix coding 

issues, (2) fix anti-patterns, and (3) improve certain metrics. 

The study results show that performing a single refactoring 

could negatively impact the quality, but applying refactorings 

in blocks (e.g., fixing more coding issues or improving more 

quality metrics) can significantly improve software quality. 

More recently, Pantiuchina et al. [35] empirically investigated 

the correlation between seven code metrics and the quality im- 

provement explicitly reported by developers in 1,282 commit 

messages. The study shows that quality metrics sometimes do 

not capture the quality improvement reported by developers. A 

common indicator to assess the quality improvements between 

these studies resides  in  the  use  the  quality  metrics.  Both 

of these studies found that minor refactoring changes rarely 

impact the quality of the software. 

All of the above-mentioned studies have focused on as- 

sessing the impact of refactorings on the quality by either 

considering the internal or the external quality attributes using 

a variety of approaches. Among them, few studies [4], [6], [7], 

[35], [36], [43], [45] mined software repositories to explore the 

impact on quality. Otherwise, the vast majority of these studies 

used a limited set of projects and mined general commits 

 

2    https://github.com/SEAL-UCLA/Ref-Finder 

Table (II)   Internal quality attributes and their corresponding 

structural metrics used in this study. 
 

Quality Attribute Study Software Metrics 

Cohesion [7], [35] Lack of Cohesion of Methods (LCOM) [8] 
Coupling [7], [35] Coupling Between Objects (CBO) [8] 

 [35] Response For Class (RFC) [8] 

 [7] Fan-in (FANIN) [19] 

 [7] Fan-out (FANOUT) [19] 
Complexity [7] Cyclomatic Complexity (CC) [24] 

 [7], [35], [42] Weighted Method Count (WMC) [8] 

 [33], [42] Response For Class (RFC) [8] 

 [42] Lack of Cohesion of Methods (LCOM) [8] 

 [7] Essential Complexity (Evg) [24] 

 [7] Paths (NPATH) [34] 

 [7] Nesting (MaxNest) [23] 
Inheritance [7], [42] Depth of Inheritance Tree (DIT) [8] 

 [7], [42] Number of Children (NOC) [8] 

 [7] Base Classes (IFANIN) [11] 
Polymorphism [42] Weighted Method Count (WMC) [8] 

 [33], [42] Response For a Class (RFC) [8] 
Encapsulation [42] Weighted Method Count (WMC) [8] 

 [42] Lack of Cohesion of Methods (LCOM) [8] 

Abstraction [42] Weighted Method Count (WMC) [8] 

 [42] Lack of Cohesion of Methods (LCOM) [8] 
Design Size [7] Lines of Code (LOC) [23] 

 [7] Lines with Comments (CLOC) [23] 

 [7] Statements (STMTC) [23] 

 [7] Classes (CDL) [23] 

 [7] Instance Variables (NIV) [23] 

 [7] Instance Methods (NIM) [23] 

 
 

without applying any form of verification regarding whether 

refactorings have actually been applied. 

Our work is different from these studies as our main purpose 

is to explore if there is an alignment between quality metrics 

and quality improvements that are documented by developers 

in the commit messages. As we summarize these state-of- 

the-art studies in Table I, we identify 8 popular quality at- 

tributes, namely Cohesion, Coupling, Complexity, Inheritance, 

Polymorphism, Encapsulation, Abstraction and Design size. 

As different studies advocate for various metrics to calculate 

these quality attributes, we extract and calculate 27 structural 

metrics. In particular, on a more qualitative sense, we conduct 

an empirical study using 1,245 commits that are proven to 

contain real-world instances of refactoring activities, in the 

purpose of  improving  software  design.  To  the best  of  our 

knowledge, no previous study has empirically investigated, 

using a curated set of commits, the representativeness of 

structural design metrics for internal  quality  attributes.  In 

the next section, we detail the steps we took to design our 

empirical setup. 

III. EMPIRICAL STUDY SETUP 

Our main goal is to investigate whether the developer 

perception of quality improvement (as expected by developers) 

aligns with the real quality improvement (as assessed by qual- 

ity metrics). In particular, we address the following research 

question: 

• Is  the  developer  perception  of  quality  improvement 

aligned with the quantitative assessment of code quality? 

To answer our research question, we conduct a three-phased 

empirical study. An overview of the experiment methodology 

is depicted in Figure 1. The initial phase consists of selecting 



and mining a large number of open-source Java projects and 

detecting refactoring instances that occur throughout their 

development history, i.e., commit-level code changes, of each 

considered project. The second phase consists of analyzing 

the commit messages as a mean of identifying refactoring 

commits in which developers document their perception of 

In this phase, We collect a total of 1,208,970 refactoring 

operations from 322,479 commits, applied during a period of 

23 years (1997-2019). An overview of the studied benchmark 

is provided in Table III. 
 

Table (III)   Studied dataset statistics. 
 

internal quality attributes. Thereafter, the third phase involves 
the selection of software quality metrics to compare its values 

before and after the selected refactoring commits. 

A. Selection of Quality Attributes and Structural Metrics 

Item Count 

Studied projects 3,795 
Commits with refactorings 322,479 
Refactoring operations 1,208,970 

Commits with refactorings & Keywords 2,312 
Remove false positive commits 1,067 

To setup a comprehensive set of quality attributes, to be Final dataset 1,245 

assessed in our  study, we first conduct a literature review   
on  existing  and  commonly  acknowledged  software  quality   
attributes [8], [11], [19], [23], [24], [34]. Then, we checked 

if the metrics assess several object-oriented design aspects in 

order to map each internal quality attribute to the appropriate 

structural metric(s). For example, the Response For Class 

(RFC) metric is typically used to measure Coupling and 

Complexity quality attributes. More generally, we extract, from 

literature review, all the associations between metrics (e.g., CK 

suite [8], McCabe [24] and Lorenz and Kidd’s book [23]) with 

internal quality attributes. 

The extraction process results in 27 distinct structural met- 

rics as shown in Table II. The list of metrics is (1) well- 

known and defined in the literature, and (2) can assess on 

different code-level elements, i.e., method, class, package, and 

(3) can be calculated by existing static analysis tools. For this 

study, all metrics values are automatically computed using the 

UNDERSTAND3, a popular static analysis framework. 

B. Refactoring Detection 

To collect the necessary commits, we refer to an existing 

large dataset of links to GitHub repositories [1]. We perform 

an initial filtering, using Reaper [31], to only navigate through 

well-engineered projects. So, we ended up reducing the num- 

ber of selected projects from 57,447 to 3,795. To extract the 

entire refactoring history in each project, we use two popular 

refactoring mining tools, namely Refactoring Miner [40] and 

ReffDiff [41]. We selected both tools because they are known 

to be in the top of refactoring detection tools, in terms of 

accuracy [48], [50] (precision of 98% and 100%, and recall of 

87% and 88%, respectively), and because they are both built-in 

to analyze code changes in git repositories and detect applied 

refactorings, which is the case for our intended data, along 

with being suitable for our study that requires a high degree 

of automation in data mining. As for the selection of commits 

with refactorings, we perform a voting process between both 

tools, i.e., in order for a given commit to be selected, it has 

to be detected by both tools as a container to at least one 

refactoring operation. We perform this voting process to raise 

the likelihood of refactoring existence in the commit. Since 

the accuracy of the tools is out of the scope of this work, and 

since we do not perform any refactoring-related analysis, we 

do not care if the detection results overlap or not. 

3  https://scitools.com/ 

C. Data Extraction 

After extracting all refactoring commits, we want to only 

keep commits where refactoring is documented, i.e., self- 

affirmed refactorings [2]. We continue to filter them, using 

the content of their messages at this stage. We  start  with 

using a keyword-based search to find commits whose mes- 

sages contain one of the keywords (i.e., Cohesion, Coupling, 

Complexity, Inheritance, Polymorphism, Encapsulation, Ab- 

straction, size) 

This keyword-based filtering resulted in only selecting 2,312 

commit messages. We notice that the ratio of these commits 

is very small in comparison with the total number of refact- 

oring commits, i.e., 322,479. However, these observations are 

aligned with previous studies [32], [45] as developers typically 

do not provide details when they document their refactorings. 

To ensure that these commits reported developers’ intention 

to improve quality attributes, we manually inspect and read 

through these refactoring commits to remove false positives. 

An example of a discarded commit is: “Refactored Ephemer- 

alFileSystemAbstraction”. We discarded this commit because 

the quality attribute is actually part of the identifier name 

of the  class. In  case  of disagreement  between the  authors 

on the inclusion of a certain commit, it was excluded. This 

step resulted in only considering 1,245 commits. During this 

process, we manually classified them with respect to their 

quality attributes, as one commit could belong to more than 

one quality attribute. Our goal is to have a gold set of 

commits in which the developers explicitly reported the quality 

attributes improvement. This gold set will serve  to  check 

later if there is an alignment between the real quality metrics 

affected in the source code, and the quality improvement as 

documented by developers. Examples of commit messages 

belonging to the gold set, are showcased in Table IV. 

Since commits typically contain multiples changed files, 

which may not all be involved in the refactoring, we filter 

them out, as we checkout, for each commit, its changed Java 

files, and keep only those involved in the refactoring opera- 

tion(s), associated with that commit. The resulting commits, 

correspond to our data points, each data point is represented by 

a set of pre-refactoring and post-refactoring Java files. These 

data points will be used in the experiments, to measure the 



 

 

Figure (1)   Empirical study design overview. 
 

Table (IV)   Examples of selected commit messages. 
 

 

Quality Attribute Commit Message 
 

 

Cohesion Refactor code for better cohesion 

Coupling Reduce coupling between packages 

Complexity reducing complexity by refactoring 

Inheritance refactored document requests code to better reflect inheritance ... 

Polymorphism Enhance field manager to account for polymorphism when getting a field from a ceiling class 

Encapsulation Refactored transactional observer code for better encapsulation and runtime performance 

Abstraction code refactored in order to improve the abstraction 

Design Size Major refactoring to reduce code size and have at least halfway reasonable structure ... 
 

 

 

 

effect of changes in terms of structural metrics, with respect 

to the quality attribute, announced in the commit message. 

IV. EMPIRICAL STUDY RESULTS & DISCUSSION 

For each refactoring commit with a documented internal 

quality attribute by developers, we compute its corresponding 

metric values (see Table II)  before  and  after  the  commit. 

For instance, for commit messages related to reducing the 

complexity of the source code, we calculate seven corres- 

ponding metric values before and after the selected refact- 

oring commit, i.e., Cyclomatic Complexity (CC), Weighted 

Method Count (WMC), Response For Class (RFC), Lack of 

Cohesion of Methods (LCOM), Essential Complexity (Evg), 

Paths (NPATH), and Nesting (MaxNest) [8], [23], [24], [34], 

as shown in Table II. As we calculate the metrics values of 

pre- and post-refactoring, we want to distinguish, for each 

metric, whether there is a variation on its pair of values, 

whether this variation indicates an improvement, and whether 

that variation is statistically significant. Therefore, we use the 

Wilcoxon test, a non-parametric test, to compare between the 

group of metric values before and after the commit, since these 

groups are dependent on one another. The Null hypothesis 

is defined by no variation in the metric values of pre- and 

post-refactored code elements. Thus, the alternative hypothesis 

indicates that there is a variation in the metric values. In each 
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Figure (2)   Boxplots of metrics values of pre- and post-refactored files. 



case, a decreased metric value is considered desirable (i.e., an 

improvement). Additionally, the variation between values of 

both sets is considered significant if its associated p-value is 

less than 0.05. It is important to note that, in many cases, the 

same metric is used to evaluate several quality attributes. In 

the following, we report the results of our research question. 

The boxplots in Figure 2 show the distribution of each 

metric before and after each of the examined commits. 

To answer our main research question, we provide a detailed 

analysis of each of the eight quality attributes as reported in 

Table II. Table V shows the overall impact of refactorings on 

quality. 

1) Cohesion: For commits whose messages report the 

amelioration of the cohesion quality attribute, the boxplot 

sketched in Figure 2a shows the pre- and post-refactoring 

results of the normalized LCOM, used in literature to estimate 

the cohesion. A poor LCOM metric value implies generally 

that the classes should be split into 1 or more classes with 

better cohesion.  Thus,  if  the  value  of  this  metric  is  low, 

it indicates a strong cohesiveness of the class. We have 

selected the normalized LCOM metric as it has been widely 

acknowledged in the literature [7], [18], [35] as being the 

alternative to the original LCOM, by addressing its main 

limitations (artificial outliers, misperception of getters and 

setters, etc.). As can be seen from the boxplot in Figure 2a, 

the median drops from 28.12 to 25.86 and the third quartile 

is significantly lower which shows a decrease in variation for 

commits after refactoring. This result indicates that LCOM is 

capturing the developer’s intention of optimizing the cohesion 

quality attribute. Furthermore, as shown in Table V, LCOM 

has a positive impact on cohesion quality, as it decreases in the 

refactored code. This implies that developers did improve the 

cohesion of their classes, as outlined in their commit messages. 
 

 

2) Coupling: For commits whose messages report the 

amelioration of the coupling quality attribute, the boxplots 

sketched in Figures 2b, 2c, 2d, 2e show the pre- and post- 

refactoring results of four structural metrics, i.e., CBO, RFC, 

FANIN, and FANOUT, used in literature to estimate the 

coupling. We observe from the figure that three out of the 

four coupling metrics experienced a degradation in the median 

values. For instance, CBO, FANIN and FANOUT medians 

dropped, respectively, from 1.19 to 1.00, from 5.94 to 5.91, and 

from 2.75 to 2.68. Coupling Between Objects (CBO) counts 

of the number of classes that are coupled to a particular class 

either through method or attribute calls. Calls are counted 

in both directions. CBO values have significantly decreased, 

which makes it a good representative of coupling. FANIN 

represents how useful is a code element to other code elements, 

while FANOUT counts the number of outsider code elements, 

a particular code element depends on. While both metrics are 

found to be degrading as developers intend to optimize coup- 

ling, only the FANOUT’s variation was statistically significant. 

Interestingly, the Response for a Class (RFC), which counts 

the visibility of a class to outsider classes, has increased as 

developers intend to optimize coupling. In theory, increasing 

the visibility of a class increases the possibility to other classes 

to reach it, and so, it increases its coupling. However, this does 

not necessarily hold according to our results, but the variation 

is not statistically significant. 

The manual inspection, of the refactored code, indicates that 

developers typically decrease coupling by reducing (1) the 

strength of dependencies that exist between classes, (2) the 

message flow of the classes, and (3) the number of inputs 

a method uses plus the number  of  subprograms  that  call 

this method. The code was improved as expected from the 

developer intentions in their commit message. 
 

 

3) Complexity: As for the  complexity  quality  attribute, 

we consider seven literature metrics, shown in Table II, to 

investigate the code complexity reduction as perceived by de- 

velopers. As seen in the boxplots in Figures 2f, 2g, 2j, 2k, 2l, 

we observe that the majority metrics ,i.e., CC, WMC, Evg, 

NPATH, and MaxNest, experienced a degradation in the 

median values. Furthermore, all the variations are statistically 

significant. Despite being associated with several metrics, 

which are different in their definitions, our results indicate 

that 5 out the 7 metrics, accurately represent the complexity 

quality attribute. However, RFC’s opposed increase is found 

to be statistically significant. 

In particular, through a manual inspection of the collected 

dataset, we observe that developers tend to reduce the number 

of local methods, simplify the structure statements, reduce 

the number of paths in the body of the code, and lower the 

nesting level of the control statements (e.g.,  selection  and 

loop statements) in the method body. On the other  hand, 

when we observe a significant increase in RFC, we notice 

that developers lower the complexity of methods by pulling 

them up in the hierarchy, and so they increase the number of 

inherited methods. 

 

4) Inheritance: For commits with amelioration to the 

inheritance quality attribute, the boxplots sketched  in  Fig- 

ures 2m, 2n, 2o show the pre- and post-refactoring results 

Summary. CC, WMC, Evg, NPATH, and MaxNest 

generally decrease  as  developer  intends  to  improve 

complexity, and all their variation is significant. Fur- 

thermore, our empirical investigation discards RFC 

from being an indicator for complexity. 

Summary. CBO, FANIN and FANOUT generally de- 

crease as developer intends to improve coupling. How- 

ever, only CBO and FANOUT variation is significant. 

RFC exhibits an opposite variation to coupling, but it 

is not statistically significant. 

Summary. The normalized LCOM metric does not only 

represent a good replacement to the original LCOM, 

but also represents the cohesion quality attribute. Its 

positive variation is in line with the developer’s inten- 

tion in improving cohesion. 



of three structural metrics, i.e., DIT, NOC, and IFANIN, used 

in literature to estimate the inheritance. We observe that only 

one metric out of the three experienced a degradation in the 

median values. For instance, the median decreases from 1.09 

to 1.00 for DIT, whereas the medians increase from 0.15 to 

0.19 and from 1.13 to 1.14 for NOC and IFANIN respectively. 

This indicates that developers probably decrease the depth of 

the hierarchy by adding more methods for a class to inherit, 

increasing the number of immediate subclasses, and increasing 

the number of immediate base classes. Although we observed 

certain cases that show inheritance improvement as perceived 

by developers, the overall depth of the inheritance tree and 

the number of immediate subclasses and superclasses did not 

decrease. The interpretation of the metric improvement highly 

depends on the quality of the code and the developer’s design 

decisions. The statistical test shows that the differences are 

statistically significant for DIT and NOC, but they are not for 

IFANIN. 

Summary. DIT generally decreases as developer in- 

tends to improve inheritance, and its variation is sig- 

nificant. IFANIN exhibit opposite variations to inherit- 

ance, but it is not statistically significant. Furthermore, 

our empirical investigation discards NOC from being 

an indicator for inheritance. 

 
5) Polymorphism: For commits whose messages  report 

the amelioration of the polymorphism quality attribute, the 

boxplots sketched in Figures 2p, 2q show the pre- and post- 

refactoring results of two structural metrics, i.e., WMC and 

RFC, used in literature to estimate the polymorphism. We 

observe that none of these metrics experienced a degradation 

in the median values. 

The concept of polymorphism is closely related to inherit- 

ance. When developers inherit instance variables and methods 

from another class, polymorphism techniques allow the sub- 

classes to use these variables and methods to perform different 

tasks. For this quality attribute, we observe similar trends to 

inheritance. There is a rise in the median for both WMC and 

RFC. When developers explicitly refer to polymorphism aspect 

improvement as a target in the commit messages, they tend 

to increase the number of local and inherited methods. The 

statistical test shows that the differences are not statistically 

significant. 
 

 

6) Encapsulation: For commits whose messages  report 

the amelioration of the encapsulation quality attribute, the 

boxplots sketched in Figures 2r, 2s show the pre- and post- 

refactoring results of two structural metrics, i.e., WMC and 

the  normalized  LCOM,  used  in  literature  to  estimate  the 

encapsulation. We observe that both metrics experienced a 

degradation in the median values. However, the variations are 

statistically significant. 

From a qualitative perspective, we observe that developers 

prevent access to attributes and methods by defining them to be 

private and enclosing them within a single construct. Although 

the results of the encapsulation metrics are not statistically 

significant, the significant results of cohesion and complexity- 

related commits discussed previously might indicate that the 

information hiding mechanism could generally help in redu- 

cing the complexity of the software systems when developers 

are actually limiting the inter-dependencies between compon- 

ents, and thus promote cohesion and modularity. 
 

 
 

7) Abstraction: For this quality attribute that measures the 

generalization-specialization aspect of the design, we noticed 

an improvement of both the WMC and the normalized LCOM 

metrics, as shown in Figures  2t,  2u.  The  differences  are 

not statistically  significant. Using  this  attribute, developers 

seem to practically handle the complexity of the  methods 

when adding one or more descendants by actually hiding the 

implementation details, and increasing the class cohesion. 
 

 
 

8) Design Size: For commits whose messages report the 

amelioration of the design size quality attribute, the boxplots 

sketched in Figures 2v, 2w, 2x, 2y, 2z, 2aa show the pre- 

and post-refactoring results of six structural metrics, i.e., 

LOC, CLOC, STMTC, CDL, NIV, NIM, used in literature 

to estimate the design size. We notice the improvement of 

four metrics, namely CLOC, CDL, NIV, and NIM after the 

commits in which developers explicitly target the improvement 

of the size of the classes. As can be seen in the box plots, 

the medians decreased in general. On the other hand, we 

notice an increase in LOC and STMTC. Regardless of the 

increase or decrease of metric values, their variations are not 

statistically significant. This indicates that developers reduce 

(1) line containing comments, (2) the number of classes and 

(3) the number of declared instance variables and methods. 

As for LOC and STMTC, we observed minor increases in the 

metric values. 

Summary. WMC and the normalized LCOM generally 

decrease as developer intends to improve abstraction, 

but their variations are not significant. Therefore, we 

could not find any metric that has a significant positive 

variation which matches the developer’s perception of 

improving abstraction. 

Summary. WMC and the normalized LCOM generally 

decrease as developer intends to improve encapsula- 

tion, but their variations are not significant. Therefore, 

we could not find any metric that has a significant 

positive variation which matches the developer’s per- 

ception of improving encapsulation. 

Summary. WMC and RFC exhibit opposite variations 

to polymorphism, but they are not statistically signi- 

ficant. Therefore, we could not find any metric that 

has a significant positive variation which matches the 

developer’s perception of improving polymorphism. 



Table (V) Effect of refactoring on structural  metrics, 

clustered by their corresponding internal quality attribute. 

(+ve) indicates positive impact; (-ve) indicates negative im- 

pact; bold indicates statistical significance; italic indicates 

improvement. 
 

Quality Attribute Metric Impact p-value 

Cohesion LCOM +ve 0.0346 
Coupling CBO +ve 0.0400 

 RFC -ve 0.2729 

 FANIN +ve 0.2338 

 FANOUT +ve 0.0456 
Complexity CC +ve 0.0001 

 WMC +ve 0.0062 

 RFC -ve 0.0021 

 LCOM -ve 0.2431 

 Evg +ve 0.0010 

 NPATH +ve < 0.0001 

 MaxNest +ve 0.0026 

Inheritance DIT +ve 0.0439 

 NOC -ve 0.0208 

 IFANIN -ve 0.3987 

Polymorphism WMC -ve 0.5137 

 RFC -ve 0.7983 
Encapsulation WMC +ve 0.1769 

 LCOM +ve 0.7737 

Abstraction WMC +ve 0.1924 

 LCOM +ve 0.6988 
Design Size LOC -ve 0.8245 

 CLOC +ve 0.7855 

 STMTC -ve 0.3311 

 CDL +ve 0.4870 

 NIV +ve 0.2757 

 NIM +ve 0.6043 

 
 

 
 

V. THREATS TO VALIDITY 

Our study has used a few thousands of refactoring commits 

in various systems. Since the analysis was not carried out in 

a controlled environment, few threats are discussed in this 

section as follows: 

Internal Validity. Our analysis is mainly threatened by the 

accuracy of the refactoring mining tools because the tool may 

miss the detection of some refactorings. However, previous 

studies [40], [41], [50] report that Refactoring Miner and 

RefDiff have high precision and recall scores compared to 

other state-of-the-art refactoring detection tools, which gives 

us confidence in  using  the  tools.  Another  potential  threat 

to validity relates to commit messages. This study does not 

exclude commits containing tangle code changes [20], in 

which developers performed changes related to different tasks 

and one of these tasks could be related to quality enhancement. 

If these changes were committed at once, there is a possibility 

that the individual changes are merged and cannot trace it 

back to the original task. We did not consider filtering out 

such changes in this study. Moreover, our manual analysis is 

a time consuming and error prone, which we tried to mitigate 

by focusing mainly on commits known to contain refactorings. 

Another potential threat to validity is the sample bias, where 

the choice of the data may directly impact the results. There- 

fore, we explored a large sample of projects, we made sure 

they are well engineered to ensure the quality of the findings 

along with diversifying the sources to reduce the bias of data 

belonging to the same entity. During our qualitative analysis, 

we  considered  only  commits  where  a  consensus  between 

authors was made about whether a message is clearly stating 

the enhancement of a particular quality attribute. Commits 

which were debatable were discarded. We also provide our 

dataset online for further refinement and analysis. 

Construct Validity. A potential threat to construct validity 

relates to the set of metrics, as it may miss some properties of 

the selected internal quality attributes. To mitigate this threat, 

we select well-known metrics that cover various properties of 

each attribute, as reported in the literature [8]. 

External Validity. Our analysis was limited to only open- 

source Java projects. However, we were still able to analyze 

3,795 projects that are well-commented, and varied in size, 

contributors, number of commits and refactorings. 

VI. CONCLUSION 

In this work, we performed an exploratory study to investig- 

ate the alignment between quality improvement and software 

design metrics by focusing on 8 internal quality attributes and 

27 structural metrics. In summary, the main conclusions are: 

—A variety of structural metrics can represent the internal 

quality attributes considered in this study. Based on our 

empirical investigation, for metrics that are associated with 

quality attributes, there are different degrees of improvement 

and degradation of software quality. 

—Most of the metrics that are mapped to the main quality 

attributes, i.e., cohesion, coupling, and complexity, do capture 

developer intentions of quality improvement reported in the 

commit messages. In contrast, there is also a case in which 

the metrics do not capture quality improvement as perceived 

by developers. 

—As for Encapsulation, Abstraction, Polymorphism, and 

Design Size. We cannot find any metric that can represent 

developer’s intention of optimizing these quality attributes, 

and so these findings motivates a deeper investigation on 

understanding the mismatch between theory and practice. 

As future work, we plan to empirically assess the impact 

of external quality metrics (e.g., testability and readability) 

as documented by developers in their commit messages on 

quality and compare and contrast them with the findings for 

the internal ones. This will give us an indication which quality 

attributes are improved the most by developers.  Also,  we 

plan on investigating the impact of composed refactorings on 

each of the quality attributes, in contrast with existing studies 

which analyze each refactoring type individually. We also want 

to explore what factors might contribute to the significant 

improvement of the quality metrics (e.g., developer experience, 

proximity to release date, and refactoring community culture). 

Summary. CLOC, CDL, NIV, and NIM generally de- 

crease as developers intend to improve design size, 

but their variations are not significant. Therefore, we 

could not find any metric that has a significant positive 

variation which matches the developer’s perception of 

improving design size. 
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